The Spectral Theorem

MATH

Goal: QTAQ=DQ^TAQ=D for any symmetric matrix AA


  • By induction method.
  • Find ABA\sim B and BDADB\sim D\longrightarrow A\sim D

ASSUME Q1=[v1:v2::vn]Q_1=[v_1:v_2:\ldots:v_n] an orthogonal matrix for which Av1=λ1v1Av_1=\lambda_1v_1.

Q1TAQ1=[v1Tv2TvnT]A[v1:v2::vn]=[v1Tv2TvnT][Av1:Av2::Avn]=[v1Tv2TvnT][λ1v1:Av2::Avn]=[λ10A1]=B\begin{aligned} Q_1^TAQ_1=&\begin{bmatrix}v_1^T\\v_2^T\\\vdots\\v_n^T\end{bmatrix}A[v_1:v_2:\ldots:v_n]\\ =&\begin{bmatrix}v_1^T\\v_2^T\\\vdots\\v_n^T\end{bmatrix}[Av_1:Av_2:\ldots:Av_n]\\ =&\begin{bmatrix}v_1^T\\v_2^T\\\vdots\\v_n^T\end{bmatrix}[\lambda_1v_1:Av_2:\ldots:Av_n]\\ =&\left [\begin{array}{c:c}\lambda_1&*\\\hdashline0&A_1 \end{array}\right]=B \end{aligned} BT=Q1TATQ1=Q1TAQ1=BB^T=Q_1^TA^TQ_1=Q_1^TAQ_1=B B is symmertric\Rightarrow B\ is\ symmertric  A1 is symmetric\Rightarrow\ A_1\ is \ symmetric  B=[λ100A1]\therefore\ B=\left[\begin{array}{c:c}\lambda_1&0\\\hdashline0&A_1 \end{array}\right]
 ABcA(λ)=cB(λ)\because\ A\sim B\\\Rightarrow c_A(\lambda)=c_B(\lambda)  cA(λ)=cB(λ)=det(BλI)=det([λ100A1]λI)=det([λ1λ00A1λI])=(λ1λ)det(A1λI)=(λ1λ)cA1(λ)\begin{aligned} \therefore\ c_A(\lambda)= c_B(\lambda)=&\mathrm{det}(B-\lambda I)=\mathrm{det}(\left[\begin{array}{c:c}\lambda_1&0\\\hdashline0&A_1\end{array}\right]-\lambda I)\\ =&\mathrm{det}(\left[\begin{array}{c:c}\lambda_1-\lambda&0\\\hdashline0&A_1-\lambda I'\end{array}\right])\\ =&(\lambda_1-\lambda)\mathrm{det}(A_1-\lambda I')\\ =&(\lambda_1-\lambda)c_{A_1}(\lambda) \end{aligned}

\therefore The characteristic polynomial of A1A_1 divides the characteristic polynomial of AA. It follows that the eigenvalues of A1A_1 are also eigenvalues of AA.


A1 is a k×k real symmertric matrix Let P2TA1P2=D1{A_1}\ is \ a \ k\times k \ real\ symmertric \ matrix \\\Rightarrow\ Let\ P_2^TA_1P_2=D_1 Q2=[100P2]Q=Q1Q2{Q_2}=\left[\begin{array}{c:c}1&0\\\hdashline0&P_2\end{array}\right]\\Q=Q_1Q_2 QTAQ=(Q1Q2)TA(Q1Q2)=(Q2TQ1T)A(Q1Q2)=Q2TBQ2=[100P2T][λ100A1][100P2]=[λ100P2TA1P2]=[λ100D1]\begin{aligned}Q^TAQ=&(Q_1Q_2)^TA(Q_1Q_2)=(Q_2^TQ_1^T)A(Q_1Q_2)=Q_2^TBQ_2\\=&\left[\begin{array}{c:c}1&0\\\hdashline0&P_2^T\end{array}\right]\left[\begin{array}{c:c}\lambda_1&0\\\hdashline0&A_1\end{array}\right]\left[\begin{array}{c:c}1&0\\\hdashline0&P_2\end{array}\right]\\=&\left[\begin{array}{c:c}\lambda_1&0\\\hdashline0&P_2^TA_1P_2\end{array}\right]\\=&\left[\begin{array}{c:c}\lambda_1&0\\\hdashline0&D_1\end{array}\right]\end{aligned}