Goal: QTAQ=D for any symmetric matrix A
- By induction method.
- Find A∼B and B∼D⟶A∼D
ASSUME Q1=[v1:v2:…:vn] an orthogonal matrix for which Av1=λ1v1.
Q1TAQ1====v1Tv2T⋮vnTA[v1:v2:…:vn]v1Tv2T⋮vnT[Av1:Av2:…:Avn]v1Tv2T⋮vnT[λ1v1:Av2:…:Avn][λ10∗A1]=B
BT=Q1TATQ1=Q1TAQ1=B
⇒B is symmertric
⇒ A1 is symmetric
∴ B=[λ100A1]
∵ A∼B⇒cA(λ)=cB(λ)
∴ cA(λ)=cB(λ)====det(B−λI)=det([λ100A1]−λI)det([λ1−λ00A1−λI′])(λ1−λ)det(A1−λI′)(λ1−λ)cA1(λ)
∴ The characteristic polynomial of A1 divides the characteristic polynomial of A. It follows that the eigenvalues of A1 are also eigenvalues of A.
A1 is a k×k real symmertric matrix⇒ Let P2TA1P2=D1
Q2=[100P2]Q=Q1Q2
QTAQ====(Q1Q2)TA(Q1Q2)=(Q2TQ1T)A(Q1Q2)=Q2TBQ2[100P2T][λ100A1][100P2][λ100P2TA1P2][λ100D1]