矩阵求导

MATH
Contents

矩阵求导的基本法则

标量对标量

...

标量对向量

ff

xp×1=(x1,x2,,xp)Tx_{p\times1}=(x_1,x_2,\dots,x_p)^T

fxp×1=(fx1,fx2,,fxp)T\frac{\partial f}{\partial x}_{p\times1}=(\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2},\dots,\frac{\partial f}{\partial x_p})^T

向量对标量

fm×1=(f1,f2,,fm)Tf_{m\times1}=(f_1,f_2,\dots,f_m)^T

xx

fx1×m=(f1x,f2x,,fmx)\frac{\partial f}{\partial x}_{1\times m}=(\frac{\partial f_1}{\partial x},\frac{\partial f_2}{\partial x},\dots,\frac{\partial f_m}{\partial x})

向量对向量

fm×1=(f1,f2,,fm)Tf_{m\times1}=(f_1,f_2,\dots,f_m)^T

xp×1=(x1,x2,,xp)Tx_{p\times1}=(x_1,x_2,\dots,x_p)^T

fxp×m=[f1x1f2x1fmx1f1x2f2x2fmx1f1xpf2xpfmxp]\frac{\partial f}{\partial x}_{p\times m}= \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial f_1}{\partial x_p} & \frac{\partial f_2}{\partial x_p} & \cdots & \frac{\partial f_m}{\partial x_p}\\ \end{bmatrix}

标量对矩阵

ff

xp×q=[x11x12x1qx21x22x2qxp1xp2xpq]x_{p\times q}=\begin{bmatrix}x_{11} & x_{12} & \cdots & x_{1q}\\x_{21} & x_{22} & \cdots & x_{2q}\\\vdots & \vdots &\ddots & \vdots\\x_{p1} & x_{p2} & \cdots & x_{pq}\end{bmatrix}

fxp×q=[fx11fx12fx1qfx21fx22fx2qfxp1fxp2fxpq]\frac{\partial f}{\partial x}_{p\times q}=\begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1q}}\\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2q}}\\ \vdots & \vdots &\ddots & \vdots\\ \frac{\partial f}{\partial x_{p1}} & \frac{\partial f}{\partial x_{p2}} & \cdots & \frac{\partial f}{\partial x_{pq}}\\ \end{bmatrix}

矩阵对标量

fm×n=[f11f12f1nf21f22f2nfm1fm2fmn]f_{m\times n}=\begin{bmatrix}f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n}\\\vdots&\vdots&\ddots&\vdots\\f_{m1}& f_{m2} &\cdots & f_{mn}\end{bmatrix}

xx

fxn×m=[f11xf21xfm1xf12xf22xfm2xf1nxf2nxfmnx]\frac{\partial f}{\partial x}_{n\times m}=\begin{bmatrix} \frac{\partial f_{11}}{\partial x} & \frac{\partial f_{21}}{\partial x} & \cdots & \frac{\partial f_{m1}}{\partial x}\\ \frac{\partial f_{12}}{\partial x} & \frac{\partial f_{22}}{\partial x} & \cdots & \frac{\partial f_{m2}}{\partial x}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{1n}}{\partial x} & \frac{\partial f_{2n}}{\partial x} & \cdots & \frac{\partial f_{mn}}{\partial x}\\ \end{bmatrix}

更高维度的

...

Reference