The Delta Function
Definition
∫pp+ϵδpδ(t)dt=1
δpϵ(t)=⎩⎨⎧ϵ1,0, p≤t<p+ϵ elsewhere
ϵ→0limδpϵ=δp
Combined with Laplace Transform
L{δp(t)}(s)=∫0+∞ϵ1e−stdt=ϵ→0lim∫pp+ϵϵ1e−stdt=ϵ→0limϵ1∫pp+ϵe−stdt=ϵ→0limϵ1(−s)1e−st∣pp+ϵ=ϵ→0lim−ϵs1(e−s(p+ϵ)−e−sp)=ϵ→0lim−ϵs1(e−sϵ−1)e−sp=ϵ→0lim−ϵse−sϵ−1e−sp=t→0lim−te−t−1e−sp=t→0lim−t′(e−t−1)′e−sp=t→0lim−1−e−te−sp=e−sp