The Delta Function

SCU

Definition

pp+ϵδpδ(t)dt=1\int_p^{p+\epsilon}\delta_p^\delta(t)dt=1 δpϵ(t)={1ϵ, pt<p+ϵ0, elsewhere\delta_p^\epsilon(t)=\left\{\begin{aligned}\frac{1}{\epsilon},&\ p\le t\lt p+\epsilon\\0, &\ elsewhere\end{aligned}\right. limϵ0δpϵ=δp\lim_{\epsilon\to 0}\delta_p^\epsilon=\delta_p

Combined with Laplace Transform

L{δp(t)}(s)=0+1ϵestdt=limϵ0pp+ϵ1ϵestdt=limϵ01ϵpp+ϵestdt=limϵ01ϵ1(s)estpp+ϵ=limϵ01ϵs(es(p+ϵ)esp)=limϵ01ϵs(esϵ1)esp=limϵ0esϵ1ϵsesp=limt0et1tesp=limt0(et1)tesp=limt0et1esp=esp\begin{aligned}\mathcal{L}\{\delta_p(t)\}(s)&=\int_{0}^{+\infty}\frac{1}{\epsilon}e^{-st}dt\\&=\lim_{\epsilon\to 0}\int_{p}^{p+\epsilon}\frac{1}{\epsilon}e^{-st}dt\\&=\lim_{\epsilon\to 0}\frac1\epsilon\int_{p}^{p+\epsilon}e^{-st}dt\\&=\lim_{\epsilon\to 0}\frac1\epsilon \frac{1}{(-s)}e^{-st}|_{p}^{p+\epsilon}\\&=\lim_{\epsilon\to 0}\frac1{-\epsilon s}(e^{-s(p+\epsilon)}-e^{-sp})\\&=\lim_{\epsilon\to 0}\frac{1}{-\epsilon s}(e^{-s\epsilon}-1)e^{-sp}\\&=\lim_{\epsilon\to 0}\frac{e^{-s\epsilon}-1}{-\epsilon s}e^{-sp}\\&=\lim_{t\to0}\frac{e^{-t}-1}{-t}e^{-sp}\\&=\lim_{t\to 0}\frac{(e^{-t}-1)'}{-t'}e^{-sp}\\&=\lim_{t\to 0}\frac{-e^{-t}}{-1}e^{-sp}\\&=e^{-sp}\end{aligned}